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1 Introduction

We have now compelling evidences for the existence of non-baryonic dark matter (DM)

in the universe, whose mass density has been accurately measured by the Wilkinson Mi-

crowave Anisotropy Probe (WMAP) [1]. The DM mass density normalized by the critical

density is given by, in the 3σ range,

0.091 < ΩCDMh
2 < 0.129, (1.1)

where h ≈ 0.7 is the scaled Hubble constant in the units of 100 (km/sec)/Mpc.

Recently, the DAMA collaboration has reported the observation of an annual modu-

lation [2] in nuclear recoil rate of NaI(Tl) detectors [3]. The DAMA signal is consistent

with elastic, spin independent DM scattering from target nuclei in the detectors. The

conventional signal region corresponds to the DM mass and the scattering cross section

(mDM, σ
SI
p ) ∼ (30 − 200GeV, 10−5 pb), which is now excluded by other DM search experi-

ments such as XENON10 [4] and CDMS (Ge) [5].

It has been shown, however, that considering effect of channeling [6, 7] in the NaI

crystal scintillators of DAMA, the spin-independent elastic scattering of DM with nuclei

can accommodate the DAMA signal with the results of other null experiments. The corre-

sponding region of the cross section, which might be compatible with all experiments (even

without considering dark stream [8]), is given by [7]

3 × 10−41cm2 . σSI
p . 5 × 10−39cm2, (1.2)

with a DM mass in the range of

3 GeV . mDM . 8 GeV. (1.3)

Various models have been studied to accommodate the DAMA signal region with

the parameters of (1.2) and (1.3), which include mirror dark matter [9], WIMPless dark

matter [10], light neutralino in the minimal supersymmetric standard model (MSSM) [11]

and right-handed sneutrino dark matter from Next-to-MSSM (NMSSM) [12]. Adding to
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those models, there are other good approaches explaining the DAMA modulation signals as

massive WIMPs (heavier than 100 GeV) free from null experimental bounds, which focus

on inelastic dark matter with non-standard halo models of DM velocity distribution or

various galactic escape velocities [13].

In this work, we would like to direct a spotlight on a singlet fermionic dark matter [14,

15] elastically scattering from target nuclei with (1.2) and (1.3) to explain the DAMA signal

reconciling other null experiments, which can also simultaneously satisfy the measured DM

mass density (1.1). Our paper is organized as following. In section 2, we briefly review

the model of singlet fermionic dark matter. Model parameter regions, which explain the

DAMA signal in the low mass region with the correct thermal relic density, are investigated

in section 3. Section 4 is the conclusion.

2 Singlet fermionic dark matter model

A standard model (SM) gauge singlet sector, aka ”hidden sector”, is introduced, which

consists of a real scalar field S and a Dirac fermion field ψ [14].1 The singlet scalar S

couples to the SM particles only through the interactions with the SM Higgs boson. The

interaction of the singlet DM fermion ψ with the SM particles comes through the interaction

of ψ with the singlet scalar S and the mixing of the scalar S with the SM Higgs.

The model Lagrangian is written as

L = LSM + Lhid + Lint, (2.1)

where LSM stands for the SM Lagrangian and the hidden sector Lagrangian is given by

Lhid = LS + Lψ − gSψ̄ψS, (2.2)

with

LS =
1

2
(∂µS) (∂µS) − m2

0

2
S2 − λ3

3!
S3 − λ4

4!
S4, (2.3)

Lψ = ψ̄ (i∂/−mψ0
)ψ. (2.4)

The interaction terms between the singlet scalar S and the SM Higgs H are given by

Lint = −λ1H
†HS − λ2H

†HS2. (2.5)

The scalar potential given in eq. (2.3) and (2.5), together with the SM Higgs potential

VSM = −µ2H†H + λ0(H
†H)2, (2.6)

derives vacuum expectation values, 〈H0〉 = v0/
√

2 and 〈S〉 = x0, of the neutral com-

ponent of the SM Higgs and the singlet scalar, respectively. The extremum conditions

1For other recent studies of hidden dark matter, see refs. [16].
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∂V/∂H|<H0>=v0/
√

2
= 0 and ∂V/∂S|<S>=x0

= 0, of total scalar potential V , lead to the

following relations among the model parameters [17]

µ2 = λ0v
2
0 + (λ1 + λ2x0)x0,

m2
0 = −λ3

2
x0 −

λ4

6
x2

0 −
λ1v

2
0

2x0

− λ2v
2
0 . (2.7)

The neutral scalar fields h and s defined by H0 = (v0 + h)/
√

2 and S = x0 + s are

mixed to yield the mass matrix given by

µ2
h ≡ ∂2V

∂h2

∣

∣

∣

h=s=0

= 2λ0v
2
0 ,

µ2
s ≡ ∂2V

∂s2

∣

∣

∣

h=s=0

=
λ3

2
x0 +

λ4

3
x2

0 −
λ1v

2
0

2x0

,

µ2
hs ≡ ∂2V

∂h∂s

∣

∣

∣

h=s=0

= (λ1 + 2λ2x0)v0. (2.8)

The corresponding mass eigenstates h1 and h2 are defined by

h1 = sin θ s+ cos θ h,

h2 = cos θ s− sin θ h, (2.9)

where the mixing angle θ is given by

tan θ =
y

1 +
√

1 + y2
, (2.10)

with y ≡ 2µ2
hs/(µ

2
h − µ2

s). Then the two Higgs boson masses m1 and m2 are given by

m2
1,2 =

µ2
h + µ2

s

2
± µ2

h − µ2
s

2

√

1 + y2, (2.11)

where the upper (lower) sign corresponds to m1(m2). From the above definition of the

mixing angle θ, we get | cos θ| > 1/
√

2, hence h1 is SM Higgs-like while h2 is singlet-like.

In total, we have eight independent model parameters relevant for DM phenomenol-

ogy. The six model parameters λ0, λ1, λ2, λ3, λ4 and x0 determine the masses, mixing and

self-couplings of the scalar sector. The singlet fermion ψ has mass mψ = mψ0
+ gSx0 as

an independent parameter of the model since mψ0
is just a free model parameter. Fi-

nally, the Yukawa coupling gS measures the interaction of ψ with singlet component of the

scalar particles.

3 Numerical analysis

Spin-independent elastic scattering of the fermionic DM ψ with nucleons arises from

t−channel Higgs exchange diagrams, which is shown in figure 1. For a light dark mat-

ter with mψ ≃ 5 GeV, the spin-independent cross section for DM-proton scattering is

approximately given by

σ(ψp → ψp) ∼ 0.1

(

gS cosθ sinθ

v0m
2
h2

)2

(GeV4), (3.1)
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Figure 1. Dominant diagram for spin-independent DM-nucleon scattering, with a low mass of the

singlet-like Higgs h2.

assuming mh2
≪ mh1

. With gS ∼ O(1), a low Higgs mass mh2
is needed in order to obtain

a desired value of σ(ψp → ψp) ∼ 10−4 pb for explaining the DAMA result. On the other

hand the scalar mixing angle sinθ, which determines ZZh2 coupling, should be small not

to conflict with the LEP constraint on the Higgs mass [18], for such a low Higgs mass.

For instance, mh2
∼ 5 (15) GeV, sinθ ∼ 0.01 (0.1) with gS = 1 provides the DAMA favored

value for the scattering cross section while satisfying the LEP constraint on the Higgs mass.

One concern about the light fermionic DM scenario for explaining the DAMA data

is that it usually leads to too large thermal DM relic density to be compatible with the

WMAP measurement (1.1), if DM pair annihilation undergoes mainly through s-channel

Higgs exchanges [19]. However, when the singlet-like Higgs mass is less than or similar to

the DM particle mass, i.e., mh2
. mψ, the dominant contribution for the annihilation of

DM pair in the early universe arises from ψψ̄ → h2h2 process, which is illustrated in figure 2.

In this kinematic regime, the singlet-like Higgs does not decay into the DM pair since it

is not kinematically allowed, but it decays entirely into the SM particles. The DM pair

annihilation to h2 pair is not suppressed by the small mixing angle θ because ψ̄ψh2 coupling

is proportional to cosθ rather than sinθ, thus it may provide large enough annihilation

cross-section to have a small DM relic density compatible with the WMAP data [20].

As a specific numerical example, let us consider the following model parameters

x0 = 100GeV, λ0 = 0.12, λ1 = −19, λ2 = 0.1, λ3 = −314GeV, λ4 = 3, (3.2)

which provide the masses and mixing angle of two Higgs particles as

mh1
= 120.5GeV, mh2

= 6.7GeV and sinθ = 0.017. (3.3)

Further setting mψ = 5GeV and gS = 1.2, we obtain the following spin-independent DM

– 4 –
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ψ 2h
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Figure 2. Dominant diagram for DM pair annihilation, when mψ . mh2
.

scattering cross section and thermal DM relic density;

σ(ψp → ψp) ∼ 2 × 10−4 pb and Ωh2 ∼ 0.1, (3.4)

which would explain the DAMA signals without conflicting other null experiments, and

also satisfy the measured DM mass density simultaneously. We also note that the lifetime

of the singlet-like Higgs h2 is much shorter than one second. Thus it decays well before

the start of the Big Bang Nucleosynthesis, making no cosmological problem.

Now we scan our model parameters in a certain region, which provides a low singlet-

like Higgs mass (1 GeV < mh2
< 10 GeV), mh1

∼ 120 GeV and small scalar mixing angle

(|θ| < 0.02) within a low DM mass range (1 GeV < mψ < 10 GeV). Figure 3 is the result of

the parameter scan, showing the spin-independent cross section for DM-nucleon scattering

as a function of the singlet fermionic DM mass mψ. In the figure, the red points are the

predictions for the scattering cross section of singlet fermionic DM and they are required

to satisfy the measured DM mass density (1.1). The cyan regions are consistent with the

DAMA signals. Also denoted are the upper limits from various other null experiments. We

clearly see that the singlet fermionic DM can explain the DAMA signals without conflicting

with other null experiments and simultaneously satisfy the DM mass density which is

consistent with the WMAP data.

4 Conclusion

We have shown that a simple model of light singlet fermionic dark matter can reconcile

the DAMA signal with other null experiments, while providing a right amount of DM mass

density which is consistent with the WMAP observation. The t-channel pair annihilation

of the light dark matters to the pair of light singlet Higgs particles, with subsequent Higgs
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Figure 3. Spin-independent cross section for DM-nucleon scattering as a function of DM mass mψ.

The red points are the predictions for the light singlet fermionic dark matter and the cyan regions

are DAMA signal regions. Also denoted are the upper limits from various DM search experiments.

decays to the SM particles, would provide a large enough annihilation cross section to have

a right amount of DM relic density. The light singlet fermionic DM, with the light singlet-

like Higgs, can provide the spin-independent DM-nucleon scattering cross section which is

compatible with the DAMA signal region and other null experiments, simultaneously.

Acknowledgments

This work was supported by the Korea Research Foundation Grant funded by the Ko-

rean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2005-210-C000006

and KRF-2007-341-C00010), the Center for High Energy Physics of Kyungpook National

University, and the BK21 program of Ministry of Education.

References

[1] WMAP collaboration, J. Dunkley et al., Five-year Wilkinson Microwave Anisotropy Probe

(WMAP) observations: likelihoods and parameters from the WMAP data,

Astrophys. J. Suppl. 180 (2009) 306 [arXiv:0803.0586] [SPIRES].

[2] A.K. Drukier, K. Freese and D.N. Spergel, Detecting cold dark matter candidates,

Phys. Rev. D 33 (1986) 3495 [SPIRES];

K. Freese, J.A. Frieman and A. Gould, Signal modulation in cold dark matter detection,

Phys. Rev. D 37 (1988) 3388 [SPIRES].

[3] DAMA collaboration, R. Bernabei et al., First results from DAMA/LIBRA and the

combined results with DAMA/NaI, Eur. Phys. J. C 56 (2008) 333 [arXiv:0804.2741]

[SPIRES].

– 6 –

http://dx.doi.org/10.1088/0067-0049/180/2/306
http://arxiv.org/abs/0803.0586
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.0586
http://dx.doi.org/10.1103/PhysRevD.33.3495
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D33,3495
http://dx.doi.org/10.1103/PhysRevD.37.3388
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D37,3388
http://dx.doi.org/10.1140/epjc/s10052-008-0662-y
http://arxiv.org/abs/0804.2741
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0804.2741


J
H
E
P
0
5
(
2
0
0
9
)
0
3
6

[4] XENON collaboration, J. Angle et al., First results from the XENON10 dark matter

experiment at the Gran Sasso national laboratory, Phys. Rev. Lett. 100 (2008) 021303

[arXiv:0706.0039] [SPIRES].

[5] CDMS collaboration, Z. Ahmed et al., Search for weakly interacting massive particles with

the first five-tower data from the cryogenic dark matter search at the Soudan underground

laboratory,Phys. Rev. Lett. 102 (2009) 011301 [arXiv:0802.3530] [SPIRES].

[6] R. Bernabei et al., Possible implications of the channeling effect in NaI(Tl) crystals,

Eur. Phys. J. C 53 (2008) 205 [arXiv:0710.0288] [SPIRES];

E.M. Drobyshevski, Channeling effect and improvement of the efficiency of charged particle

registration with crystal scintillators, Mod. Phys. Lett. A 23 (2008) 3077 [arXiv:0706.3095]

[SPIRES]; DAMA/LIBRA findings urge replacement of the WIMP hypotheses by the daemon

paradigm as a basis for experimental studies of DM objects,

Mod. Phys. Lett. A 24 (2009) 177 [arXiv:0811.0151] [SPIRES].

[7] F. Petriello and K.M. Zurek, DAMA and WIMP dark matter, JHEP 09 (2008) 047

[arXiv:0806.3989] [SPIRES].

[8] P. Gondolo and G. Gelmini, Compatibility of DAMA dark matter detection with other

searches, Phys. Rev. D 71 (2005) 123520 [hep-ph/0504010] [SPIRES];

C. Savage, G. Gelmini, P. Gondolo and K. Freese, Compatibility of DAMA/LIBRA dark

matter detection with other searches, JCAP 04 (2009) 010 [arXiv:0808.3607] [SPIRES].

[9] R. Foot, Mirror dark matter and the new DAMA/LIBRA results: a simple explanation for a

beautiful experiment, Phys. Rev. D 78 (2008) 043529 [arXiv:0804.4518] [SPIRES].

[10] J.L. Feng and J. Kumar, The WIMPless miracle: dark-matter particles without weak-scale

masses or weak interactions, Phys. Rev. Lett. 101 (2008) 231301 [arXiv:0803.4196]

[SPIRES];

J.L. Feng, J. Kumar and L.E. Strigari, Explaining the DAMA signal with WIMPless dark

matter, Phys. Lett. B 670 (2008) 37 [arXiv:0806.3746] [SPIRES].

[11] A. Bottino, F. Donato, N. Fornengo and S. Scopel, Interpreting the recent results on direct

search for dark matter particles in terms of relic neutralino, Phys. Rev. D 78 (2008) 083520

[arXiv:0806.4099] [SPIRES].

[12] D.G. Cerdeno, C. Munoz and O. Seto, Right-handed sneutrino as thermal dark matter,

Phys. Rev. D 79 (2009) 023510 [arXiv:0807.3029] [SPIRES].

[13] S. Chang, G.D. Kribs, D. Tucker-Smith and N. Weiner, Inelastic dark matter in light of

DAMA/LIBRA, arXiv:0807.2250 [SPIRES];

J. March-Russell, C. McCabe and M. McCullough, Inelastic dark matter, non-standard halos

and the DAMA/LIBRA results, arXiv:0812.1931 [SPIRES];

Y. Cui, D.E. Morrissey, D. Poland and L. Randall, Candidates for inelastic dark matter,

arXiv:0901.0557 [SPIRES].

[14] Y.G. Kim, K.Y. Lee and S. Shin, Singlet fermionic dark matter, JHEP 05 (2008) 100

[arXiv:0803.2932] [SPIRES].

[15] Y.G. Kim and K.Y. Lee, The minimal model of fermionic dark matter,

Phys. Rev. D 75 (2007) 115012 [hep-ph/0611069] [SPIRES].

[16] M. Pospelov, A. Ritz and M.B. Voloshin, Secluded WIMP dark matter,

Phys. Lett. B 662 (2008) 53 [arXiv:0711.4866] [SPIRES];

W. Krolikowski, Again on hidden sector of the universe, accessible through photonic portal,

Acta Phys. Polon. B 40 (2009) 111 [arXiv:0809.1931] [SPIRES];

– 7 –

http://dx.doi.org/10.1103/PhysRevLett.100.021303
http://arxiv.org/abs/0706.0039
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.0039
http://dx.doi.org/10.1103/PhysRevLett.102.011301
http://arxiv.org/abs/0802.3530
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.3530
http://dx.doi.org/10.1140/epjc/s10052-007-0479-0
http://arxiv.org/abs/0710.0288
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0710.0288
http://dx.doi.org/10.1142/S0217732308028430
http://arxiv.org/abs/0706.3095
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0706.3095
http://dx.doi.org/10.1142/S021773230902893X
http://arxiv.org/abs/0811.0151
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.0151
http://dx.doi.org/10.1088/1126-6708/2008/09/047
http://arxiv.org/abs/0806.3989
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.3989
http://dx.doi.org/10.1103/PhysRevD.71.123520
http://arxiv.org/abs/hep-ph/0504010
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0504010
http://dx.doi.org/10.1088/1475-7516/2009/04/010
http://arxiv.org/abs/0808.3607
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA,0904,010
http://dx.doi.org/10.1103/PhysRevD.78.043529
http://arxiv.org/abs/0804.4518
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D78,043529
http://dx.doi.org/10.1103/PhysRevLett.101.231301
http://arxiv.org/abs/0803.4196
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,101,231301
http://dx.doi.org/10.1016/j.physletb.2008.10.038
http://arxiv.org/abs/0806.3746
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B670,37
http://dx.doi.org/10.1103/PhysRevD.78.083520
http://arxiv.org/abs/0806.4099
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D78,083520
http://dx.doi.org/10.1103/PhysRevD.79.023510
http://arxiv.org/abs/0807.3029
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D79,023510
http://arxiv.org/abs/0807.2250
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.2250
http://arxiv.org/abs/0812.1931
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0812.1931
http://arxiv.org/abs/0901.0557
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0901.0557
http://dx.doi.org/10.1088/1126-6708/2008/05/100
http://arxiv.org/abs/0803.2932
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JHEPA,0805,100
http://dx.doi.org/10.1103/PhysRevD.75.115012
http://arxiv.org/abs/hep-ph/0611069
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA,D75,115012
http://dx.doi.org/10.1016/j.physletb.2008.02.052
http://arxiv.org/abs/0711.4866
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B662,53
http://arxiv.org/abs/0809.1931
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=APPOA,B40,111


J
H
E
P
0
5
(
2
0
0
9
)
0
3
6

S. Andreas, T. Hambye and M.H.G. Tytgat, WIMP dark matter, Higgs exchange and

DAMA, JCAP 10 (2008) 034 [arXiv:0808.0255] [SPIRES];

J.L. Feng, H. Tu and H.-B. Yu, Thermal relics in hidden sectors, JCAP 10 (2008) 043

[arXiv:0808.2318] [SPIRES];

P.-H. Gu, M. Hirsch, U. Sarkar and J.W.F. Valle, Neutrino masses, leptogenesis and dark

matter in hybrid seesaw, arXiv:0811.0953 [SPIRES];

J. McDonald and N. Sahu, Z2-singlino dark matter in a portal-like extension of the minimal

supersymmetric standard model, JCAP 06 (2008) 026 [arXiv:0802.3847] [SPIRES].

[17] S. Profumo, M.J. Ramsey-Musolf and G. Shaughnessy, Singlet Higgs phenomenology and the

electroweak phase transition, JHEP 08 (2007) 010 [arXiv:0705.2425] [SPIRES].

[18] ALEPH, DELPHI, L3, OPAL, LEP working group for Higgs boson searches

collaborations, R. Barate et al., Search for the standard model Higgs boson at LEP,

Phys. Lett. B 565 (2003) 61 [hep-ex/0306033] [SPIRES].

[19] S. Andreas, T. Hambye and M.H.G. Tytgat in ref. [16].

[20] M. Pospelov, A. Ritz and M. Voloshin in ref. [16].

– 8 –

http://dx.doi.org/10.1088/1475-7516/2008/10/034
http://arxiv.org/abs/0808.0255
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JCAPA,0810,034
http://dx.doi.org/10.1088/1475-7516/2008/10/043
http://arxiv.org/abs/0808.2318
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2318
http://arxiv.org/abs/0811.0953
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.0953
http://dx.doi.org/10.1088/1475-7516/2008/06/026
http://arxiv.org/abs/0802.3847
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0802.3847
http://dx.doi.org/10.1088/1126-6708/2007/08/010
http://arxiv.org/abs/0705.2425
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0705.2425
http://dx.doi.org/10.1016/S0370-2693(03)00614-2
http://arxiv.org/abs/hep-ex/0306033
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-EX/0306033

	Introduction
	Singlet fermionic dark matter model
	Numerical analysis
	Conclusion

